Skip to main content

History - Software Testing

Do you know who distinguish testing from debugging? The separation of debugging from testing was initially introduced by Glenford J. Myers in 1979. Although his attention was on breakage testing ,it illustrated the desire of the software engineering community to separate fundamental development activities, such as debugging, from that of verification. Dr. Dave Gelperin and Dr. William C. Hetzel classified in 1988 the phases and goals in software testing in the following stages:

  • Until 1956 - Debugging oriented
  • 1957-1978 - Demonstration oriented
  • 1983-1987 - Destruction oriented
  • 1983-1987 - Evaluation oriented
  • 1988-onward- Prevention oriented

References:

  • Myers, Glenford J. (1979). The Art of Software Testing. John Wiley and Sons. ISBN 0-471-04328-1.
  • Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.
  • until 1956 it was the debugging oriented period, when testing was often associated to debugging: there was no clear difference between testing and debugging. Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.
  • From 1957-1978 there was the demonstration oriented period where debugging and testing was distinguished now - in this period it was shown, that software satisfies the requirements. Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.
  • The time between 1979-1982 is announced as the destruction oriented period, where the goal was to find errors. Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.
  • 1983-1987 is classified as the evaluation oriented period: intention here is that during the software lifecycle a product evaluation is provided and measuring quality. Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.
  • From 1988 on it was seen as prevention oriented period where tests were to demonstrate that software satisfies its specification, to detect faults and to prevent faults. Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.

Comments

Popular posts from this blog

Revolutionize software testing with AI! 🤖💻 Share your thoughts on ethical implications in the comments.

  As technology evolves, so too does the field of software testing. One exciting development in recent years is the use of AI (Artificial Intelligence) to automate repetitive tasks and improve testing accuracy. Through analyzing large amounts of data and identifying patterns, AI can help identify potential defects or vulnerabilities in software. AI-powered tools can also generate test cases and scenarios by simulating user behavior and input, allowing for more efficient and effective testing. In addition, machine learning algorithms can analyze and learn from past testing data, leading to better predictions and more streamlined testing. AI-powered tools can also help identify and prioritize critical bugs and defects, saving valuable time and effort in manual testing. But it's important to note that AI-powered testing is not a replacement for human testers. While AI can automate certain tasks and help identify potential issues, it's still necessary for human testers to provide a

Is AI taking over your job in software development and testing? 😱"

Are you a software developer or tester feeling threatened by the rise of AI in your industry? 😰 You're not alone. Many professionals in the field are concerned about the potential consequences of AI's integration into software development and testing. While some experts believe that AI can bring significant benefits to the industry, others worry that it could replace human expertise altogether. 🤔 AI algorithms can analyze massive amounts of data and automate many tasks, but they cannot replace the critical thinking and creativity of human beings. Additionally, there are ethical concerns associated with the use of AI in software development and testing. So, what can you do to ensure that you're not replaced by AI in your job? 💪 First, it's essential to recognize that AI is not a replacement for human expertise but rather a tool to augment it. Therefore, it's essential to learn how to work with AI-powered systems to increase your efficiency and productivity. Additi

HP Quality Center - Best Practices

1.Introduction Quality Center is a test management tool which provides very good features for managing both your manual and automated test cases. This paper highlights the best practices for managing your test cases. When you open Quality center, depending on your rights it display the below mentioned option in the sidebar: 1. Requirements 2. Test Plan 3. Test Lab 4. Defects 5. Dashboard 2.Requirements When you have assigned with the responsibility of developing your test cases in the quality center then you must be wondering where to start with. I am going to share my experience to overcome such a situation. You need to find the solution of some question before you start writing your test cases. 1. Is your requirement developed and available? 2. Is your requirement organized in a logical sequence? If answer to both of the above question is Yes, then you can start with Requirement option in the side bar. In case your requirement is under development, then you keep your