Skip to main content

What is Software Testing?

Software testing is any activity aimed at evaluating an attribute or capability of a program or system and determining that it meets its required results. [Hetzel88] Although crucial to software quality and widely deployed by programmers and testers, software testing still remains an art, due to limited understanding of the principles of software. The difficulty in software testing stems from the complexity of software: we can not completely test a program with moderate complexity. Testing is more than just debugging. The purpose of testing can be quality assurance, verification and validation, or reliability estimation. Testing can be used as a generic metric as well. Correctness testing and reliability testing are two major areas of testing. Software testing is a trade-off between budget, time and quality.

Software Testing is the process of executing a program or system with the intent of finding errors. [Myers79] Or, it involves any activity aimed at evaluating an attribute or capability of a program or system and determining that it meets its required results. [Hetzel88] Software is not unlike other physical processes where inputs are received and outputs are produced. Where software differs is in the manner in which it fails. Most physical systems fail in a fixed (and reasonably small) set of ways. By contrast, software can fail in many bizarre ways. Detecting all of the different failure modes for software is generally infeasible. [Rstcorp]
Unlike most physical systems, most of the defects in software are design errors, not manufacturing defects. Software does not suffer from corrosion, wear-and-tear -- generally it will not change until upgrades, or until obsolescence. So once the software is shipped, the design defects -- or bugs -- will be buried in and remain latent until activation.
Software bugs will almost always exist in any software module with moderate size: not because programmers are careless or irresponsible, but because the complexity of software is generally intractable -- and humans have only limited ability to manage complexity. It is also true that for any complex systems, design defects can never be completely ruled out.
Discovering the design defects in software, is equally difficult, for the same reason of complexity. Because software and any digital systems are not continuous, testing boundary values are not sufficient to guarantee correctness. All the possible values need to be tested and verified, but complete testing is infeasible. Exhaustively testing a simple program to add only two integer inputs of 32-bits (yielding 2^64 distinct test cases) would take hundreds of years, even if tests were performed at a rate of thousands per second. Obviously, for a realistic software module, the complexity can be far beyond the example mentioned here. If inputs from the real world are involved, the problem will get worse, because timing and unpredictable environmental effects and human interactions are all possible input parameters under consideration.
A further complication has to do with the dynamic nature of programs. If a failure occurs during preliminary testing and the code is changed, the software may now work for a test case that it didn't work for previously. But its behavior on pre-error test cases that it passed before can no longer be guaranteed. To account for this possibility, testing should be restarted. The expense of doing this is often prohibitive. [Rstcorp]
An interesting analogy parallels the difficulty in software testing with the pesticide, known as the Pesticide Paradox [Beizer90]: Every method you use to prevent or find bugs leaves a residue of subtler bugs against which those methods are ineffectual. But this alone will not guarantee to make the software better, because the Complexity Barrier [Beizer90] principle states: Software complexity(and therefore that of bugs) grows to the limits of our ability to manage that complexity. By eliminating the (previous) easy bugs you allowed another escalation of features and complexity, but his time you have subtler bugs to face, just to retain the reliability you had before. Society seems to be unwilling to limit complexity because we all want that extra bell, whistle, and feature interaction. Thus, our users always push us to the complexity barrier and how close we can approach that barrier is largely determined by the strength of the techniques we can wield against ever more complex and subtle bugs. [Beizer90]

Comments

Popular posts from this blog

Revolutionize software testing with AI! 🤖💻 Share your thoughts on ethical implications in the comments.

  As technology evolves, so too does the field of software testing. One exciting development in recent years is the use of AI (Artificial Intelligence) to automate repetitive tasks and improve testing accuracy. Through analyzing large amounts of data and identifying patterns, AI can help identify potential defects or vulnerabilities in software. AI-powered tools can also generate test cases and scenarios by simulating user behavior and input, allowing for more efficient and effective testing. In addition, machine learning algorithms can analyze and learn from past testing data, leading to better predictions and more streamlined testing. AI-powered tools can also help identify and prioritize critical bugs and defects, saving valuable time and effort in manual testing. But it's important to note that AI-powered testing is not a replacement for human testers. While AI can automate certain tasks and help identify potential issues, it's still necessary for human testers to provide a

Is AI taking over your job in software development and testing? 😱"

Are you a software developer or tester feeling threatened by the rise of AI in your industry? 😰 You're not alone. Many professionals in the field are concerned about the potential consequences of AI's integration into software development and testing. While some experts believe that AI can bring significant benefits to the industry, others worry that it could replace human expertise altogether. 🤔 AI algorithms can analyze massive amounts of data and automate many tasks, but they cannot replace the critical thinking and creativity of human beings. Additionally, there are ethical concerns associated with the use of AI in software development and testing. So, what can you do to ensure that you're not replaced by AI in your job? 💪 First, it's essential to recognize that AI is not a replacement for human expertise but rather a tool to augment it. Therefore, it's essential to learn how to work with AI-powered systems to increase your efficiency and productivity. Additi

HP Quality Center - Best Practices

1.Introduction Quality Center is a test management tool which provides very good features for managing both your manual and automated test cases. This paper highlights the best practices for managing your test cases. When you open Quality center, depending on your rights it display the below mentioned option in the sidebar: 1. Requirements 2. Test Plan 3. Test Lab 4. Defects 5. Dashboard 2.Requirements When you have assigned with the responsibility of developing your test cases in the quality center then you must be wondering where to start with. I am going to share my experience to overcome such a situation. You need to find the solution of some question before you start writing your test cases. 1. Is your requirement developed and available? 2. Is your requirement organized in a logical sequence? If answer to both of the above question is Yes, then you can start with Requirement option in the side bar. In case your requirement is under development, then you keep your